Projections

Plate Carrée (Equirectangular, φ1 = 0°)

x = λ 2 π y = φ 2 π

Equirectangular, φ1 = 15°

x = λ 2 π y = φ 2 ( 3 1 ) 2 π

Equirectangular, φ1 = 30°

x = λ 2 π y = φ 3 3 π

Plate Carrée (Equirectangular, φ1 = 45°)

x = λ 2 π y = φ 2 2 π

Equirectangular, φ1 = 60°

x = λ 2 π y = φ π

Mercator

x = λ 2 π y = ln ( tan ( π 4 + φ 2 ) ) 2 π

Gall Stereographic

x = λ 2 π y = tan ( φ 2 ) ( 2 + 1 ) 2 π

Miller

x = λ 2 π y = 5 ln ( tan ( π 4 + 2 φ 5 ) ) 8 π

Lambert (Cylindrical Equal Area, φ1 = 0°)

x = λ 2 π y = sin ( φ ) 2 π

Behrmann (Cylindrical Equal Area, φ1 = 30°

x = λ 2 π y = 2 sin ( φ ) 3 π

Hobo-Dyer (Cylindrical Equal Area, φ1 = 37°30'

x = λ 2 π y = sin ( φ ) ( cos ( 5 π 24 ) ) 2 2 π

Gall-Peters (Cylindrical Equal Area, φ1 = 45°)

x = λ 2 π y = sin ( φ ) π

Balthasart (Cylindrical Equal Area, φ1 = 50°)

x = λ 2 π y = sin ( φ ) ( cos ( 5 π 18 ) ) 2 2 π

Sinusoidal

x = λ cos ( φ ) 2 π y = φ 2 π

Mollweide

2 θ + sin ( 2 θ ) = π sin ( φ ) x = λ cos ( θ ) 2 π y = sin ( θ ) 4

Robinson

Latitude XScale YScale 90° 0.5322 1.0000 85° 0.5722 0.9761 80° 0.6213 0.9394 75° 0.6732 0.8936 70° 0.7186 0.8435 65° 0.7597 0.7903 60° 0.7986 0.7346 55° 0.8350 0.6769 50° 0.8679 0.6176 45° 0.8962 0.5571 40° 0.9216 0.4958 35° 0.9427 0.4340 30° 0.9600 0.3720 25° 0.9730 0.3100 20° 0.9822 0.2480 15° 0.9900 0.1860 10° 0.9954 0.1240 0.9986 0.0620 1.0000 0.0000 -5° 0.9986 -0.0620 -10° 0.9954 -0.1240 -15° 0.9900 -0.1860 -20° 0.9822 -0.2480 -25° 0.9730 -0.3100 -30° 0.9600 -0.3720 -35° 0.9427 -0.4340 -40° 0.9216 -0.4958 -45° 0.8962 -0.5571 -50° 0.8679 -0.6176 -55° 0.8350 -0.6769 -60° 0.7986 -0.7346 -65° 0.7597 -0.7903 -70° 0.7186 -0.8435 -75° 0.6732 -0.8936 -80° 0.6213 -0.9394 -85° 0.5722 -0.9761 -90° 0.5322 -1.0000 x = XScale λ 2 π y = 13523 YScale 16974 π

NaturalEarth

Latitude XScale YScale 90° 0.5630 1.0000 85° 0.6270 0.9761 80° 0.6754 0.9394 75° 0.7160 0.8936 70° 0.7525 0.8435 65° 0.7874 0.7903 60° 0.8196 0.7346 55° 0.8492 0.6769 50° 0.8763 0.6176 45° 0.9006 0.5571 40° 0.9222 0.4958 35° 0.9409 0.4340 30° 0.9570 0.3720 25° 0.9703 0.3100 20° 0.9811 0.2480 15° 0.9894 0.1860 10° 0.9953 0.1240 0.9988 0.0620 1.0000 0.0000 -5° 0.9988 -0.0620 -10° 0.9953 -0.1240 -15° 0.9894 -0.1860 -20° 0.9811 -0.2480 -25° 0.9703 -0.3100 -30° 0.9570 -0.3720 -35° 0.9409 -0.4340 -40° 0.9222 -0.4958 -45° 0.9006 -0.5571 -50° 0.8763 -0.6176 -55° 0.8492 -0.6769 -60° 0.8196 -0.7346 -65° 0.7874 -0.7903 -70° 0.7525 -0.8435 -75° 0.7160 -0.8936 -80° 0.6754 -0.9394 -85° 0.6270 -0.9761 -90° 0.5630 -1.0000 x = XScale λ 2 π y = 13 YScale 50

Kavrayskiy VII

x = λ 1 3 ( φ π ) 2 2 π y = φ 3 3 π

Wagner VI

x = λ 1 3 ( φ π ) 2 2 π y = φ 2 π

Aitoff

α = arccos ( cos ( φ ) cos ( λ 2 ) ) x = cos ( φ ) sin ( λ 2 ) sinc ( α ) π y = sin ( φ ) sinc ( α ) 2 π

Hammer

x = cos ( φ ) sin ( λ 2 ) 2 1 + cos ( φ ) cos ( λ 2 ) y = sin ( φ ) 4 1 + cos ( φ ) cos ( λ 2 )

Winkel I

x = λ ( cos ( φ ) π + 2 ) 2 π ( π + 2 ) y = φ π + 2

Winkel Tripel

α = arccos ( cos ( φ ) cos ( λ 2 ) ) x = sinc ( α ) λ + cos ( φ ) sin ( λ 2 ) π sinc ( α ) π ( π + 2 ) y = sin ( φ ) + φ sinc ( α ) 2 sinc ( α ) ( π + 2 )

Van der Grinten

θ = arcsin ( | 2 φ π | ) A = | π λ λ π | 2 G = cos ( θ ) sin ( θ ) + cos ( θ ) 1 P = G ( 2 sin ( θ ) 1 ) Q = A 2 + G x = { λ 2 π , φ = 0 0 , λ = 0 φ = ± π 2 sign ( λ ) | A ( G P 2 ) + A 2 ( G P 2 ) 2 ( P 2 + A 2 ) ( G 2 P 2 ) | 2 ( P 2 + A 2 ) , otherwise y = { 0 , φ = 0 sign ( φ ) tan ( θ 2 ) 2 , λ = 0 φ = ± π 2 sign ( φ ) | P Q A ( A 2 + 1 ) ( P 2 + A 2 ) Q 2 | 2 ( P 2 + A 2 ) , otherwise

Eckert II

x = λ 4 3 sin ( | φ | ) 4 π y = sgn ( φ ) ( 2 4 3 sin ( | φ | ) ) 4

Eckert V

x = λ ( 1 + cos ( φ ) ) 4 π y = φ 2 π

Azimuthal Equidistant (Polar)

x = sin ( λ ) ( 0.25 φ 2 π ) y = - cos ( λ ) ( 0.25 φ 2 π )

Definitions and Notes